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Abstract 
 

The article presents the numerical modeling of the phenomenon of artificial hyperthermia which is caused by the interaction of an 
electric field. The electric field is induced by the applicator positioned within the biological tissue with cancer. In addition, in order to 
estimate the degree of tumor destruction under the influence of high temperature an Arrhenius integral has been used. The 
distribution of electric potential in the domain considered is described by the Laplace system of equations, while the temperature 
field is described by the Pennes system of equations. These problems are coupled by source function being the additional component 
in the Pennes equation and resulting from the electric field action. The boundary element method is applied to solve the coupled 
problem connected with the heating of biological tissues. 
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1. Introduction 

Hyperthermia in addition to radiotherapy and 
chemotherapy, has an important and significant role in modern 
oncology. The essence of this method of treatment focuses on 
the thermal sensitivity of living cells [6]. Over a given 
temperature, between 40 and 45°C, normal cells remain 
unaffected, while the pathological cells are destroyed in the 
progressive effects of the necrosis and apoptosis phenomena 
[6]. However, exceeding 45°C can cause irreversible changes 
both in normal (healthy) and tumor tissues, because the 
temperature above 45°C as so-called thermoablative 
temperature. In this connection, a very important problem in the 
treatment by hyperthermia is to provide and control the 
temperature in the target area in order to minimize overheating 
and damage the normal tissues. For correct evaluate of the 
tissue destruction, it is not enough to exceed the assumed 
temperature at the cell. For this purpose, the Arrhenius integral 
value is calculated, which allows to estimate tissue damage. 

2. Mathematical modelling 

RF hyperthermia (RFH) represents coupled electro-thermal 
problems. In order to determine the intensity of the electric field 
the simplification known as the quasi-static approach can be 
taken into account, because the RFH uses low frequencies [1]. 

Using above mentioned approach, the electric field intensity 
E (V/m) inside the tissue for 2D problem can be calculated as 
follows [1, 4] 
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where e=1, 2 denotes the healthy tissue and tumor, respectively, 
X={x1, x2} and ϕe [V] is an electric potential, while the heat 
generation Qe

E(X) due to the electromagnetic heating for healthy 
tissue and tumor is defined as follows 
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where σ [S/m] is an electrical conductivity.  
The electric potential ( )φe X  inside the healthy tissue Ω1 and 

cancer Ω2 (c.f. Figure 1) is described by the system of Laplace 
equations 
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where εe [C
2/(Nm2)] is a dielectric permittivity of tissue. 

For a heat transfer process in biological tissue the Pennes model 
has been proposed [5] 
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where t denotes time, ρe [kg/m3] is the density, ce [J/(kgK)] is 
the specific heat, λe [W/(mK)] is the thermal conductivity, Te 
[K] is the temperature, ke = GBecB [W/(m3K)]is the perfusion 
rate (GBe [1/s] is the perfusion coefficient, cB [J/(m3K)] is the 
volumetric specific heat of blood), TB is the supplying arterial 
blood temperature and Qmet e [W/m3] is the metabolic heat 
source. 

Differential equations which describe the electric (c.f. eq. 
(3)) and temperature (c.f. eq. (4)) fields are supplemented by 
appropriate boundary and conditions [4]. Equation (4) is also 
supplemented by the initial condition T0(X). 

3. Arrhenius scheme 

To estimate the degree of tissue destruction an Arrhenius 
integral [2] is used, which describing the relationship between 
temperature and tissue damage 
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where R [J/(molK)] is the universal gas constant (R=8.3143), ∆E 
[J/mol] is the activation energy, A [1/s] is the pre-exponential 
factor, T(X, t f ) denotes tissue temperature at the point considered, 
while [0, tF] is the considered time interval [2]. 
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The main objective of the Arrhenius scheme is, that thermal tissue 
damage is irreversible and total, and as a criterion of tissue damage 
is assumed that the value of the Arrhenius integral is set to [2] 

( , ) 1fArr X t ≥  (6) 

In this case (cf. eq. (6)) it is assumed that the probability of the 
cell's damage equal to 63%. If the Arrhenius integral value 
exceeds 4.63 the probability of cell destruction is equal to 99%. 

 
Figure 1: The healthy and tumor tissue with internal electrode 

4. Boundary element method 

In order to solve the equations describing the potential of 
electric field and the temperature field in the considered 
domains the 1st scheme of boundary element method has been 
applied [3]. The boundary integral equations corresponding to 
the equations (3) can be expressed as follows 
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while for temperature field (c.f. eq. (4)) 
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where Qe=Qmet e+Qe
E(X). The functions ( )*φe ⋅  and ( )*

eT ⋅  are the 

fundamental solutions. 

5. Results of computations 

The 2D domain of dimensions 0.12×0.16 [m] has been 
considered. The tumor region which is located at the center of 
healthy tissue (c.f. Figure 1) is approximated by circle (radius: 
0.025 [m]). The electrical and thermophysical parameters are 
easy to find in many references e.g. [4]. In Figure 2 the 
temperature history at the control points Pi (i=1, 2, 3) obtained 
after the action of the internal electrode (electric potential 
U=17[V], analysis time t=3600s, time step ∆t=1s) are shown, 
while in Figure 3 the Arrhenius integral courses at the control 
points are presented. Values of the parameters in the formula (5) 
are assumed as ∆E=2.58⋅105, A=7.39⋅1039. 

 

Figure 2: Temperature history at the control points (c.f. Fig. 1) 

 

Figure 3: Arrhenius integral courses at the control points 
 
It is clearly visible that the cells corresponding to the points P1, 
P2 and P3 are destroyed with high probability after 600s, 1200s 
and 1800s, respectively (Arr>1). Simultaneously, after 1800s 
the cell at the point P1 is definitely destroyed (Arr>4.63) (c.f. 
Figure 3). 
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