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Abstract

Integration of stress in RC cross-section is an importa st any computation of an RC beam or frame. The standaregue
in most cases is to use numerical integration. However, 852@upan & Saje developed a semi-analytical method of zectiress
integration [4].

This paper discusses a compact algorithm for the methodgmelol by Zupan & Saje. Compactness is achieved by splitting
computations into two parts. One is computing stress iateghat are independent of the section geometry and theistbemputing
coefficients dependent on geometry but not on stress.

In order to demonstrate the steps of the algorithm, the asithave provieded a detailed example of the most frequenttliex
section, published by Fafitis [1]. The second part preséetsdmplete algorithm.
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1. Introduction 2. Internal forces

Internal forces — e.g. normal force and bending moments —of  The method of Zupan & Saje imposes two limitations: the
a bar cross-section are the result of the stress field irtehover  strain may not be uniform and the boundary of the crosseecti
the section area. has to be composed of (or approximated by) straight segments
The subroutine for stress integration for a given state ef de i
formation is the one of most important subroutines in corimgut  2-1.  System of coordinates

bar structures, such as beams or frames; particularly, @dafka Computations have to be done in a system of coordinates

highly non-linear material. - . (r, t) rotated in such a way that the field of strain is independent
This subroutine makes it possible to solve the reverse, no 5 1.

linear problem iteratively: for given external forces todfithe

deformation that provides equilibrium. The subroutinedqui- 2.2, Sed
librium enables development of other subroutines, e.g.fone .
computing computes the envelope: i.e. to find the line (dépac Internal forces of RC section are composed of a steel part and
contour) which can be considered as a set of ultimate liatest & concrete part. The steel part may be computed as follows:
(ultimate strength) points. _ a,f

Analytical integration formulae may be used for simple sec-Si o Z Ar®tio(e) @
tion shapes, such as rectangular, T-shape or similar. For co bars

plex section geometries — sections may have holes or cafstonswheres; is the section force component,is the area of given re-
of separate parts — the boundary integral approach is regess inforcement bar and, 3 depends of component of internal force.
which involves evaluation of a series of one variable iraégyrin - In what follows the steel pa§; will not be considered.
most cases, the integrals are computed with the use of ncatheri
integration (e.g. [3], [2]). 2.3. Concrete
Another possibility is to use the method developed by Zupan
& Saje [4] which does not require numerical integration. Wa-c
sider it as semi-analytical since it requires a substaatraunt of
computations. Itis rather difficult to use in manual caltiolas. = & wi(t)o(t)dt )
Moreover, this method — although conceptually simple — * — ¢
seems to be quite complex in practical use. Perhaps thi®is th . .
reason why it has failed to replace numerical integration. WhﬁreFills the_s?c'?on f_oLcle compont_aﬁV,er,hMt]_andwi(t)
The paper demonstrates sequence of computation on the e&?—t e polynomial of variable, appropriate for the given compo-
ample published by Fafitis [1]. The complete algorithm isifar ent.
lated in the last part.

The concrete part of internal forces is represented by bound
ary intergals. The integrals may be written in the form:

The closed integral (2) may be split into a sum of integrals
over pieces of boundary. As long as the section boundary is
composed of straight edges the strain is linear along eagé ed
i.e. functione(t) is linear. Therefore — as pointed out by Zupan
& Saje [4] — the inverse functiot(e) is also linear and may be
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Table 1: Numerical results of stress integration accortlirtthe Zupan & Saje approach. Normal force in kips.

Edge 1-2
D - [Ay By C4] -0.000000e+00 -6.155597e+07 -1.891938e+05
I, 5.924722e-08 -2.400624e-05 1.087326e-02 AN =-579.426
Edge 2-3
D -[A: By Ci] -0.000000e+00 6.155597e+07 2.416980e+05
Io -5.377954e-08 1.989080e-05 -7.650901e-03 AN =-624.81
Edge 3-4
D - [Ay By C4] -0.000000e+00 -6.155597e+07 3.271789e+04
I, -5.826715e-09 4.723782e-06 -4.390765e-03 AN =-434.434
Edge 4-1
D - [Ay By C4] -0.000000e+00 6.155597e+07 -9.116942e+04
I, -3.590325e-10 6.083446e-07 -1.168407e-03 AN =-143.97

used as a variable in integral (2). _-0.0035 -4.25ksi

The contribution fromn-th edge may be written as follows:

€k
ARV =t [T Wi e 3)
eh1 de -0.002
27.460

where4t = D is constant.

The polynomialsi¥; () are at most quadratic and they may
be written as follows:
Wi(e) = Aie® + Bie + C; 4 =® o®
Substituting this into (3) leads to the expression with ¢hrge-
grals of the following type:

S Figure 1: The rectangular section (dimensions in inchea}-an
lo = / e%o(e)de ®) ysed by Fafitis and distribution of strain and stress in cetecr
€k—1

wherea = 0,1, 2. ) 4. Algorithm
The dependence on geometry of the edge is now represented

by coefficientsd;, B;, C;. Integrals of type (5) may be expressed

asl, = Hu(er) — Ha(cr_1) where: The sequence of computations shown above is not the algo-

rithm yet, since it is necessary to take into account specisés
cp as well. For example, it is not possible to write functigfa) for

Ha(ep) = / e%o(e)de (6)  the horizontal edge of the section.

0 Moreover, in the approach of Zupan & Saje strain cannot be
and this integral is dependent only on the stress-straimfathe  uniform in the section area. Designed algorithm overcorhiss t
upper limite, but it is not dependent on the edge geometry. limitation.
2.4.  Sequence of computations 5 Conclusions
For each vertex straig; and the set ofi,, (¢;) must be com-

puted. Then, the set of;, B;, Ci, D as well asl, has to be com- Zupan & Saje method simplifies integration of section forces
puted for each edge. The value of integral (2) may be obtainegbr the wide range of nonlinear stress-strain laws. Deslgrigo-

by combining the apropriat&, with A;, B;, Cs, D. rithm makes implementation of this approach simple andsbbu
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