
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland

A compact algorithm for semi-analytical computing of internal forces in RC cross-section
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Abstract

Integration of stress in RC cross-section is an important step in any computation of an RC beam or frame. The standard procedure
in most cases is to use numerical integration. However, in 2005, Zupan & Saje developed a semi-analytical method of section stress
integration [4].

This paper discusses a compact algorithm for the method published by Zupan & Saje. Compactness is achieved by splitting
computations into two parts. One is computing stress integrals that are independent of the section geometry and the other is computing
coefficients dependent on geometry but not on stress.

In order to demonstrate the steps of the algorithm, the authors have provieded a detailed example of the most frequently studied
section, published by Fafitis [1]. The second part presents the complete algorithm.
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1. Introduction

Internal forces – e.g. normal force and bending moments – of
a bar cross-section are the result of the stress field integrated over
the section area.

The subroutine for stress integration for a given state of de-
formation is the one of most important subroutines in computing
bar structures, such as beams or frames; particularly, for RC as a
highly non-linear material.

This subroutine makes it possible to solve the reverse, non-
linear problem iteratively: for given external forces to find the
deformation that provides equilibrium. The subroutine forequi-
librium enables development of other subroutines, e.g. onefor
computing computes the envelope: i.e. to find the line (capacity
contour) which can be considered as a set of ultimate limit state
(ultimate strength) points.

Analytical integration formulae may be used for simple sec-
tion shapes, such as rectangular, T-shape or similar. For com-
plex section geometries – sections may have holes or can consist
of separate parts – the boundary integral approach is necessary,
which involves evaluation of a series of one variable integrals. In
most cases, the integrals are computed with the use of numerical
integration (e.g. [3], [2]).

Another possibility is to use the method developed by Zupan
& Saje [4] which does not require numerical integration. We con-
sider it as semi-analytical since it requires a substantialamount of
computations. It is rather difficult to use in manual calculations.

Moreover, this method – although conceptually simple –
seems to be quite complex in practical use. Perhaps this is the
reason why it has failed to replace numerical integration.

The paper demonstrates sequence of computation on the ex-
ample published by Fafitis [1]. The complete algorithm is formu-
lated in the last part.

2. Internal forces

The method of Zupan & Saje imposes two limitations: the
strain may not be uniform and the boundary of the cross-section
has to be composed of (or approximated by) straight segments.

2.1. System of coordinates

Computations have to be done in a system of coordinates
(r, t) rotated in such a way that the field of strain is independent
of r.

2.2. Steel

Internal forces of RC section are composed of a steel part and
a concrete part. The steel part may be computed as follows:

Si =
∑
bars

Ar
α
t
β
σ(ε) (1)

whereSi is the section force component,A is the area of given re-
inforcement bar andα, β depends of component of internal force.
In what follows the steel partSi will not be considered.

2.3. Concrete

The concrete part of internal forces is represented by bound-
ary intergals. The integrals may be written in the form:

Fi =

∮
wi(t)σ(t)dt (2)

whereFi is the section force component[N,Mr,Mt] andwi(t)
is the polynomial of variablet, appropriate for the given compo-
nent.

The closed integral (2) may be split into a sum of integrals
over pieces of boundary. As long as the section boundary is
composed of straight edges the strain is linear along each edge
i.e. functionε(t) is linear. Therefore – as pointed out by Zupan
& Saje [4] – the inverse functiont(ε) is also linear andε may be



CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland

Table 1: Numerical results of stress integration accordingto the Zupan & Saje approach. Normal force in kips.
Edge 1-2

D · [A1 B1 C1] -0.000000e+00 -6.155597e+07 -1.891938e+05
Iα 5.924722e-08 -2.400624e-05 1.087326e-02 ∆N =-579.426

Edge 2-3
D · [A1 B1 C1] -0.000000e+00 6.155597e+07 2.416980e+05

Iα -5.377954e-08 1.989080e-05 -7.650901e-03 ∆N =-624.81
Edge 3-4

D · [A1 B1 C1] -0.000000e+00 -6.155597e+07 3.271789e+04
Iα -5.826715e-09 4.723782e-06 -4.390765e-03 ∆N =-434.434

Edge 4-1
D · [A1 B1 C1] -0.000000e+00 6.155597e+07 -9.116942e+04

Iα -3.590325e-10 6.083446e-07 -1.168407e-03 ∆N =-143.97

used as a variable in integral (2).
The contribution fromn-th edge may be written as follows:

∆F
(n)
i = +

∫ εk

εk−1

Wi(ε)σ(ε)
dt

dε
dε (3)

where dt
dε

= D is constant.
The polynomialsWi(ε) are at most quadratic and they may

be written as follows:

Wi(ε) = Aiε
2 +Biε+ Ci (4)

Substituting this into (3) leads to the expression with three inte-
grals of the following type:

Iα =

∫ εk

εk−1

ε
α
σ(ε)dε (5)

whereα = 0, 1, 2.
The dependence on geometry of the edge is now represented

by coefficientsAi, Bi, Ci. Integrals of type (5) may be expressed
asIα = Hα(εk)−Hα(εk−1) where:

Hα(εp) =

∫ εp

0

ε
α
σ(ε)dε (6)

and this integral is dependent only on the stress-strain lawand the
upper limitεp but it is not dependent on the edge geometry.

2.4. Sequence of computations

For each vertex strainεi and the set ofHα(εi) must be com-
puted. Then, the set ofAi, Bi, Ci, D as well asIα has to be com-
puted for each edge. The value of integral (2) may be obtained
by combining the apropriateIα with Ai, Bi, Ci, D.

3. Example

The example published by Fafitis [1] shown in Fig. 1 is a kind
of reference example for internal forces computation. Therefore,
it has been deemed convenient to demonstrate the discussed ap-
proach on this example.

The stress-strain law is a parabola-rectangle, shown on the
right in Fig. 1. The obtained results are shown in Table 1. Forthe
sake of brevity only the computation ofN is shown. RowIα are
ordered from the highest to lowest, i.e. the sequence ofIα is I2,
I1 andI0.

The dot product of rowD · [A1 B1 C1] and rowIα gives
∆N as shown in the last column. The sum of∆N for all edges
gives the normal force i.e.N=-1782.64 kip for the section.
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Figure 1: The rectangular section (dimensions in inches) anal-
ysed by Fafitis and distribution of strain and stress in concrete

4. Algorithm

The sequence of computations shown above is not the algo-
rithm yet, since it is necessary to take into account specialcases
as well. For example, it is not possible to write functionr(t) for
the horizontal edge of the section.

Moreover, in the approach of Zupan & Saje strain cannot be
uniform in the section area. Designed algorithm overcomes this
limitation.

5. Conclusions

Zupan & Saje method simplifies integration of section forces
for the wide range of nonlinear stress-strain laws. Designed algo-
rithm makes implementation of this approach simple and robust.
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